Exit times for Integrated Random Walks

نویسنده

  • DENIS DENISOV
چکیده

We consider a centered random walk with finite variance and investigate the asymptotic behaviour of the probability that the area under this walk remains positive up to a large time n. Assuming that the moment of order 2 + δ is finite, we show that the exact asymptotics for this probability are n−1/4. To show these asymptotics we develop a discrete potential theory for integrated random walks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality of the asymptotics of the one-sided exit problem for integrated processes

We consider the one-sided exit problem for (fractionally) integrated random walks and Lévy processes. We prove that the rate of decrease of the non-exit probability – the so-called survival exponent – is universal in this class of processes. In particular, the survival exponent can be inferred from the (fractionally) integrated Brownian motion. This, in particular, extends Sinai’s result on the...

متن کامل

Integrability of exit times and ballisticity for random walks in Dirichlet environment

We consider random walks in Dirichlet random environment. Since the Dirichlet distribution is not uniformly elliptic, the annealed integrability of the exit time out of a given finite subset is a non-trivial question. In this paper we provide a simple and explicit equivalent condition for the integrability of Green functions and exit times on any finite directed graph. The proof relies on a quo...

متن کامل

First-exit times and residence times for discrete random walks on finite lattices.

In this paper, we derive explicit formulas for the surface averaged first-exit time of a discrete random walk on a finite lattice. We consider a wide class of random walks and lattices, including random walks in a nontrivial potential landscape. We also compute quantities of interest for modeling surface reactions and other dynamic processes, such as the residence time in a subvolume, the joint...

متن کامل

A path integral formula with applications to quantum random walks in

We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the...

متن کامل

Knots and random walks in vibrated granular chains.

We study experimentally statistical properties of the opening times of knots in vertically vibrated granular chains. Our measurements are in good qualitative and quantitative agreement with a theoretical model involving three random walks interacting via hard-core exclusion in one spatial dimension. In particular, the knot survival probability follows a universal scaling function which is indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012